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Abstract. A new Nevanlinna theorem on q p-adic small functions is given.
Let f, g, be two meromorphic functions on a complete ultrametric algebraically
closed field IK of characteristic 0, or two meromorphic functions in an open disk
of IK, that are not quotients of bounded analytic functions by polynomials. If
f and g share 7 small meromorphic functions I.M., then f = g.

Better results hold when f and g satisfy some property of growth. Partic-
ularly, if f and g have finitely many poles or finitely many zeros and share 3
small meromorphic functions I.M., then f = g.

1. Generalities

Definitions: We denote by K a complete ultrametric algebraically closed field
of characteristic 0. Given a ∈ K and R ∈ R+, we denote by d(0, R−) the disk
{x ∈ K | |x| < R}, by D the set d(0, R−) and by E the set K \ d(0, R−) = {x ∈
K | |x| ≥ R}.

We denote by A(K) (resp. A(D), the algebra of analytic functions in K (resp.
in D, i.e. the K-algebra of power series converging in D). Next, we denote by
A(E) the K-algebra of Laurent series converging in E [3], [4], [9].

Next, we denote by M(K) (resp. M(D)) the field of fractions of A(K) (resp.
A(D)). We will also denote by Au(D) the K-algebra of unbounded analytic
functions in D and by Mu(D) the set of meromorphic functions in D that are
not a quotient of two bounded analytic functions in D. Finally, we denote by
M(E) the field of fractions of A(E).

We have to introduce the counting function of zeros and poles of a meromoror-
phic function f , counting or not multiplicity. Here we will choose a presentation
that avoids assuming that all functions we consider admit no zero and no pole at
the origin.

Definitions: Let f ∈ M(d(0, r) and for every a ∈ d(0, r), let ω(f) be the
multiplicity order of 0 if 0 is a zero of f , and ω(f) = 0, else. Next, let θ(f) be
the multiplicity order of 0 if 0 is a pole of f , and θ(f) = 0 else.

We denote by Z(r, f) the counting function of zeros of f in d(0, r) in the
following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤
r, of respective order sn.
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We set Z(r, f) = max(ω(f) log r +

σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is

called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f ignoring multiplicity, we

put ω(f) = 1 if ω(f) > 0 and ω(f) = 0 else Now, we denote by Z(r, f) the
counting function of zeros of f ignoring multiplicity:

Z(r, f) = ω0(f) log r +

σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting

function of zeros of f in d(0, r) ignoring multiplicity.
In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles of

f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = θ(f) log r+

τ(r)∑
n=1

tn(log r − log |bn|) and thenN(r, f) is called the counting

function of the poles of f , counting multiplicity.
Next, in order to define the counting function of poles of f ignoring multiplicity,

we set

N(r, f) = θ(f) log r+

τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the counting

function of the poles of f , ignoring multiplicity.

Now, we can define the characteristic function of f as T (r, f) = max(Z(r, f), N(r, f)).
Thus this definition applies to functions f ∈ M(d(0, R−) as well as functions
f ∈M(K).

Consider now a function f ∈ A(E). By definition, the restriction of f to
any annulus R ≤ |x| ≤ S is an annalytic element in that annulus and hence
has finitely many zeros in that annulus [3], [4], [9]. Similarly, a meromorphic
function f ∈M(E) has finitely many zeros and finitely many poles in the annulus
R ≤ |x| ≤ S. That is summarized in Proposition 1.1:

Proposition 1.1 [1], [3], [4], [10] : Let f ∈ M(E). If f has infinitely many
zeros in E (resp. infinitely many poles in E), the set of zeros (resp. the set of
poles) is a sequence (αn)n∈N such that lim

n→+∞
|αn| = +∞. If f has no zero in E,

then it is of the form

q∑
−∞

anx
n with |aq|rq > |an|rn ∀n < q, , ∀r ≥ R.

Proposition 1.2 [1], [3], [4], [10] : Let f ∈ M(E) have no zero and no pole
in E. There exists a unique integer q ∈ Z such that x−qf(x) has a limit b ∈ K∗.

Definitions: Let f ∈M(E) have no zero and no pole in E. The integer q ∈ Z
such that x−qf(x) has a limit b ∈ K∗ is called the Motzkin index of f and f is
called a Motzkin factor if lim

|x|→+∞
x−qf(x) = 1 [1], [10].
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Proposition 1.3 [1], [3], [4], [10] : Let f ∈ M(E). Then f factorizes in a
unique way in the form fSf 0 where fS is a Motzkin factor and f 0 ∈ M(E) has
continuation to an element of H(D) that has no zero in D.

Notations: We will denote by Ac(E) the set of f ∈ A(E) having infinitely
many zeros in E. Similarly, we will denote by Mc(E) the set of functions f ∈
M(E) which have infinitely many zeros or poles in E.

Thus we can define counting functions for zeros and poles in that way: Let
f ∈ M(E) and, for every r > R, let a1, ..., aσ(r) be the sequence of zeros of f in
the annulus R ≤ |x| ≤ r, with |aj| ≤ |aj+1|, 1 ≤ j ≤ σ(r), and let sj be the order

of aj. Then we put ZR(r, f) =
∑σ(r)

j=1 sj(log(r) − log(|aj|)) and ZR(r, f) is called

the counting function of zeros for f in M(E), counting multiplicity. And we

define ZR(r, f) =
∑σ(r)

j=1 (log(r)− log(|aj|)) which is called the counting function

of zeros for f in M(E), ignoring multiplicity.
Similarly, let b1, ..., bτ(r) be the sequence of zeros of f in the annulusR ≤ |x| ≤ r,

with |bj| ≤ |bj+1|, 1 ≤ j ≤ τ(r) and let tj be the order of bj. Then we put

NR(r, f) =
∑τ(r)

j=1 tj(log(r) − log(|bj|)) which is called the counting function of

poles for f inM(E), counting multiplicity and we put NR(r, f) =
∑τ(r)

j=1(log(r)−
log(|bj|)) which is called the counting function of poles for f in M(E), ignoring
multiplicity.

Now, we put TR(r, f) = max(ZR(r, f), NR(r, f)) and the function TR(r, f) is
called the characteristic function of f ∈M(E).

Remark: If we change the origin, the functions Z, N, T are not changed, up
to an additive constant.

2. Nenalinna Theory

We have to recall the two main Theorems, applied to each domain of definition
of meromorphic functions.

Theorem 2.1 (First Main Fundamental Theorem in a disk and in K
): Let f, g ∈ M(K) (resp. let f, g ∈ M(D)). Then T (r, f + b) = T (r, f) +
O(1), T (r, f+g) ≤ T (r, f)+T (r, g)+O(1). Let P (X) ∈ K[X]. Then T (r, P (f)) =
deg(P )T (r, f) +O(1).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(D)). Then T (r, f) = Z(r, f), Z(r, fg) =
Z(r, f) + Z(r, g) and T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if
lim

r→+∞
T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when r is big enough.

Theorem 2.2 (First Main Fundamental Theorem out of a hole): Let
f, g ∈ M(E). Then for every b ∈ K, we have TR(r, f + b) = TR(r, f) +

O(log(r)), (r ≥ R) TR(r, f.g) ≤ TR(r, f)+TR(r, g)+O(log(r)), (r ≥ R) TR(r,
1

f
) =

TR(r, f)), TR(r, f +g) ≤ TR(r, f)+TR(r, g)+O(log(r)) (r ≥ R) and TR(r, fn) =
nTR(r, f).
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Moreover, if both f and g belong to A(E), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ≥ R)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ≥ R). Particularly, if f ∈ A(E), then
TR(r, f + b) = TR(r, f) + O(1) (r ≥ R). Given a polynomial P (X) ∈ K[X], then
TR(r, P ◦ f) = qTR(r, f) +O(log(r)).

The Nevanlinna Theory is well known in C [11]. It was constructed in a field
like K in the eighties and next, in a disk and out of a hole [2], [8], [4], [5].

Theorem 2.3 (Second Main Theorem in K and in a disk) [2], [4], [8]:
Let α1, ..., αq ∈ K, with q ≥ 2, let S = {α1, ..., αq} and let f ∈ M(K) (resp.
f ∈M(d(0, R−))). Then
q∑
j=1

(
Z(r, f−αj)−Z(r, f−αj)

)
≤ T (r, f)+N(r, f)−ZS

0 (r, f ′)−log r+O(1) ∀r > 0

(resp. ∀r < R).

Theorem 2.4 (Second Main Theorem out of a hole) [5] : Let f ∈M(K)
and let a1, ..., aq ∈ K be distinct. Then
(q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) ∀r ≥ R.

3. Small functions

Recall that given three functions φ, ψ, ζ defined in an interval J =]R,+∞[
(resp. J =]a,R[), with values in [0,+∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r))
if there exists a constant b ∈ R such that φ(r) ≤ ψ(r) + bζ(r). We shall write
φ(r) = ψ(r) +O(ζ(r)) if |ψ(r)−φ(r)| is bounded by a function of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h

from J =]R,+∞[ (resp. from J =]a,R[) to R such that lim
r→+∞

h(r)

ζ(r)
= 0 (resp.

lim
r→R

h(r)

ζ(r)
= 0) and such that φ(r) ≤ ψ(r)+h(r). And we shall write φ(r) = ψ(r)+

o(ζ(r)) if there exists a function h from J =]R,+∞[ (resp. from J =]a,R[) to R

such that lim
r→+∞

h(r)

ζ(r)
= 0 (resp. lim

r→R

h(r)

ζ(r)
= 0) and such that φ(r) = ψ(r) + h(r).

Definitions and notations: For each f ∈M(K) (resp. f ∈M(D), resp. f ∈
M(E)) we denote byMf (K), (resp. Mf (D), resp. Mf (E)) the set of functions
h ∈ M(K), (resp. h ∈ M(D), resp. M(E)) such that T (r, h) = o(T (r, f))
when r tends to +∞ (resp. when r tends to R, resp. when r tends to +∞).
Similarly, if f ∈ A(K) (resp. f ∈ A(D), f ∈ A(E)) we shall denote by Af (K)
(resp. Af (D), resp. Af (E)) the setMf (K)∩A(K), (resp. Mf (D)∩A(D), resp.
Mf (E) ∩ A(E)).

The elements of Mf (K) (resp. Mf (D), resp. Mf (E)) are called small mero-
morphic functions with respect to f , or small functions in brief. Similarly, if
f ∈ A(K) (resp. f ∈ A(D), resp. f ∈ A(E)) the elements of Af (K) (resp.



TWO P-ADIC MEROMORPHIC FUNCTIONS SHARING A FEW SMALL FUNCTIONS I.M.5

Af (D), resp. Af (E)) are called small analytic functions with respect to f or
small functions in brief.

Now we have several immediate results:

Theorem 3.1: Let a ∈ K and r > 0. Af (K) is a K-subalgebra of A(K), Af (D)
is a K-subalgebra of A(D), Af (E) is a K-subalgebra of A(E),Mf (K) is a subfield
field of M(K), Mf (D) is a subfield of field of M(D) and Mf (E) is a subfield
field of M(E). Moreover, Ab(D) is a sub-algebra of Af (D) and Mb(D) is a
subfield of Mf (D).

Theorem 3.2: Let f ∈ M(K), (resp.f ∈ M(D), resp. f ∈ M(E)) and
let g ∈ Mf (K), (resp. g ∈ Mf (D), resp. g ∈ Mf (E)). Then T (r, fg) =

T (r, f)+o(T (r, f)) and T (r,
f

g
) = T (r, f)+o(T (r, f)), (resp. T (r, fg) = T (r, f)+

o(T (r, f)) and T (r,
f

g
) = T (r, f) + o(T (r, f)), resp. TR(r, fg) = TR(r, f) +

o(TR(r, f)) and TR(r,
f

g
) = TR(r, f) + o(TR(r, f))).

Here we can mention some precisions to Theorem 3.1 that will be useful later:

Theorem 3.3: Let f ∈ A(K) (resp. let f ∈ Au(D), resp. let f ∈ A(E)). Let
g, h ∈ Af (K) (resp. let g, h ∈ Af (D), resp. let g, h ∈ Af (E) ) with g and h
not identically zero. If gh belongs to Af (K) (resp. to Af (D), resp. to Af (E) ),
then so do g and h.

Theorem 3.4 : Let f, g ∈ A(K) (resp. let f, g ∈ Au(D), resp. let f, g ∈
A(E)) and let q ∈ N∗. If

f

g
is not a q-th root of 1, then f q − gq does not belong

to Af (K) (resp. to Af (D), resp. to Af (E)).

Theorem 3.5 is a wide generalization of Theorem 2.1. It consists of the follow-
ing claim: given a meromorphic function f and a rational function G of degree n
whose coefficients are small functions with respect to f , then T (r,G(f)) is equiv-
alent to nT (r, f). The big difficulty consists of showing that T (r,G(f)) is not
smaller than nT (r, f). The proof, based on an elementary property of Bezout’s
Theorem, was given in C by F. Gackstatter and I. Laine [7] and was made in a
field such as K by C.C. Yang and Peichu Hu [8].

Theorem 3.5: Let f ∈ M(K) (resp. f ∈ M(D), let f ∈ M(E)). Let G(Y ) ∈
Mf (K)(Y ), (resp. G ∈ Mf (d(D))(Y ), resp. G(Y ) ∈ Mf (E)(Y )) and let n =
deg(G). Then T (r,G(f)) = nT (r, f) + o(T (r, f)), (resp. T (r,G(f)) = nT (r, f) +
o(T (r, f)), resp. TR(r,G(f)) = nTR(r, f) + o(TR(r, f)).

Theorem 3.6: Let a ∈ K and r > 0. Let f ∈M(K)\K(x) (resp. f ∈Mu(D),
resp. f ∈Mc(E) ). Then, f is transcendental over Mf (K) (resp. over Mf (D),
resp. over Mf (E)).
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Proof. Suppose there exists a polynomial P (Y ) =
∑n

j=0 ajY
j ∈ Mf (K)[Y ] 6= 0

such that P (f) = 0. If f belongs to Mu(d(a,R−)) we may obviously suppose
that a = 0. By Theorem 3.6 we have T (r, anf

n) = nT (r, f) + o(T (r, f)) when-
ever f belongs to M(K) \ K(x) or to Mf (d(0, R−)) and then TR(r, anf

n) =

nTR(r, f) + o(TR(r, f)) whenever f belongs toMc(K, whereas T (r,
∑n−1

j=0 ajf
j) =

(n− 1)T (r, f) + o(T (r, f)), a contradiction. �

Corollary 3.6.a: let a ∈ K and r > 0. Let f ∈ M(K) \ K(x) (resp. f ∈
Mu(D), resp. f ∈Mc(E)). Then, f is transcendental over K(x).

A function h ∈ Mb(D) is obviously small with respect to any function f ∈
Mu(D). So, we have the following corollary:

Corollary 3.6.b: Let a ∈ K and r > 0 and let f ∈ Mu(D). Then, f is
transcendental over Mb(D).

Theorem 3.7 is known as Second Main Theorem on three small functions. It
holds in the field K as well as in C. But now, it also holds for meromorphic
functions on E.

Theorem 3.7: Let f ∈ M(K) (resp. f ∈ Mu(D), resp. f ∈ Mc(E)) and let
w1, w2, w3 ∈ Mf (K) (resp. w1, w2, w3 ∈ Mf (D), resp. w1, w2, w3 ∈ Mf (E)) be

pairwise distinct. Then T (r, f) ≤
∑3

j=1 Z(r, f −wj) + o(T (r, f)), (resp T (r, f) ≤∑3
j=1 Z(r, f−wj)+o(T (r, f)), resp. TR(r, f) ≤

∑3
j=1 ZR(r, f−wj)+o(T (r, f))).

Theorem 3.8: Let f ∈ M(K) (resp. f ∈ Mu(D), resp. f ∈ Mc(E) and let
w1, w2 ∈ Mf (K) (resp. w1, w2 ∈ Mf (D), resp. w1, w2 ∈ Mf (E)) be distinct.
Then T (r, f) ≤ Z(r, f−w1)+Z(r, f−w2)+N(r, f)+o(T (r, f)), (resp. T (r, f) ≤
Z(r, f − w1) + Z(r, f − w2) + N(r, f) + o(T (r, f)), resp. TR(r, f) ≤ ZR(r, f −
w1) + ZR(r, f − w2) +NR(r, f) + o(TR(r, f))).

Next, by setting g = f − w1 and w = w1 + w2, we can write Corollary 3.8.a:

Corollary 3.8.a: Let g ∈M(K) (resp. g ∈Mu(D), resp. g ∈Mc(E)) and let
w ∈ Mg(K) (resp. w ∈ Mg(D), resp. w ∈ Mg(E)). Then T (r, g) ≤ Z(r, g) +
Z(r, g−w)+N(r, g)+o(T (r, g)), (resp. T (r, g) ≤ Z(r, g)+Z(r, g−w)+N(r, g)+
o(T (r, g)), resp. TR(r, g) ≤ ZR(r, g) + ZR(r, g − w) +N(Rr, g) + o(TR(r, g))).

Corollary 3.8.b: Let f ∈ A(K) (resp. f ∈ Au(D), (resp. f ∈ Ac(E)) and let
w1, w2 ∈ Af (K) (resp. w1, w2 ∈ Af (D), resp. w1, w2 ∈ Af (E)) be distinct.
Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)), (resp. T (r, f) ≤
Z(r, f − w1) + Z(r, f − w2) + o(T (r, f))), resp. TR(r, f) ≤ ZR(r, f − w1) +
ZR(r, f − w2) + o(TR(r, f))).

And similarly to Corollary 3.8.a, we get Corollary 3.8.c :

Corollary 3.8.c: Let f ∈ A(K) (resp. f ∈ Au(D), resp. f ∈ Ac(E) ) and let
w ∈ Af (K) (resp. w ∈ Af (D), resp. w ∈ Af (E)). Then T (r, f) ≤ Z(r, f) +



TWO P-ADIC MEROMORPHIC FUNCTIONS SHARING A FEW SMALL FUNCTIONS I.M.7

Z(r, f −w) + o(T (r, f)), (resp. T (r, f) ≤ Z(r, f) +Z(r, f −w) + o(T (r, f)), resp.
TR(r, f) ≤ ZR(r, f) + ZR(r, f − w) + o(TR(r, f))).

4. New Properties of small functions

Here is now an application of that theory:

Theorem 4.1: Let h, w ∈ Ab(D) and let m, n ∈ N∗ be such that min(m,n) ≥
2, max(m,n) ≥ 3. Then the functional equation

(E) (g(x))n = h(x)(f(x))m + w(x)

has no solution (f, g) in Au(D).

Proof. Without loss of generality, we can obviously assume a = 0. Let F (x) =
g(x)n. Thanks to Corollary 3.8.c we can write

T (r, F ) ≤ Z(r, F ) + Z(r, F − w) + o(T (r, F )).

Now, it appears that Z(r, F ) ≤ 1
n
Z(r, F ). Moreover, since h is bounded, Z(r, h)

is bounded, hence Z(r, hfm) ≤ Z(r, f) + Z(r, h) = Z(r, f) +O(1), hence

(1) Z(r, hfm) ≤ 1

m
Z(r, hfm) +O(1) =

1

m
Z(r, F ) +O(1).

On the other hand, Z(r, F ) = Z(r, F−w)+O(1) = T (r, F )+O(1). Consequently,

by (1), we can derive T (r, F ) ≤ (
1

m
+

1

n
)T (r, F ) + o(T (r, F )). Therefore we have

1

m
+

1

n
≥ 1, a contradiction to the hypothesis which implies

1

m
+

1

n
≤ 5

6
. �

Theorem 4.2: Let f ∈ M(K)be transcendental (resp. f ∈ Mu(D), resp.
f ∈Mc(E)) and let wj ∈Mf (K) (j = 1, ..., q) (resp. wj ∈Mf (D),
resp. wj ∈ Mf (E) ) be q distinct small functions other than the constant ∞.
Then

qT (r, f) ≤ 3

q∑
j=1

Z(r, f − wj) + o(T (r, f)),

(resp.

qT (r, f) ≤ 3

q∑
j=1

Z(r, f − wj) + o(T (r, f)),

resp.

qTR(r, f) ≤ 3

q∑
j=1

ZR(r, f − wj) + o(TR(r, f))).

Moreover, if f has finitely many poles in K (resp. in D, resp. in E), then

qT (r, f) ≤ 2

q∑
j=1

Z(r, f − wj) + o(T (r, f)),
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(resp.

qT (r, f) ≤ 2

q∑
j=1

Z(r, f − wj) + o(T (r, f)),

resp.

qTR(r, f) ≤ 2

q∑
j=1

ZR(r, f − wj) + o(TR(r, f))).

Definition: Let f, g ∈ M(K) (resp. f, g ∈ Mu(D)), resp. f, g ∈ Mc(E)).
Then f and g will be said to share a small function w ∈M(K) (resp. w ∈M(D),
resp. w ∈ M(C)), ignoring multiplicity if f(x) = w(x) implies g(x) = w(x) and
if g(x) = w(x) implies f(x) = w(x).

Theorem 4.3 : Let f, g ∈M(K)be transcendental (resp. f, g ∈Mu(D), resp.
f, g ∈Mc(E)) be distinct and share q distinct small functions ignoring multiplic-
ity wj ∈Mf (K)∩Mg(K) (j = 1, ..., q) (resp. wj ∈Mf (D)∩Mg(D) (j = 1, ..., q),
(resp. wj ∈Mf (E)∩Mg(E) (j = 1, ..., q)), other than the constant ∞. Then in
K and in D we have

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g))

and in E, we have
q∑
j=1

ZR(r, f − wj) ≤ TR(r, f − g) + o(TR(r, f)) + o(TR(r, g)).

Proof. Suppose we are in K or in D. On one hand, when f(x) = wj(x), then
g(x) = wj(x) hence f(x)− g(x) = 0. Consequently, we can check that

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) +
∑
i 6=j

Z(r, wi − wj)

But clearly,
∑
i 6=j

Z(r, wi − wj) ≤ o(T (r, f)) + o(T (r, g)), which ends the proof.

The proof is obviously similar if f, g ∈Mc(E). �

The following Theorem 4.4 was proven for functions f, g ∈ M(K) and f, g ∈
Mu(D) in [6]. Here we can generalize the proof to M(E).

Theorem 4.4 : Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(D),
resp. f, g ∈ Mc(E) ) be distinct and share 7 distinct small functions (other
than the constant ∞) ignoring multiplicity, wj ∈Mf (K) ∩Mg(K) (j = 1, ..., 7)
(resp. wj ∈ Mf (D) ∩ Mg(D), resp. wj ∈ Mf (E) ∩ Mg(E) (j = 1, ..., 7), ).
Then f = g.

Moreover, if f and g have finitely many poles and share 3 distinct small func-
tions (other than the constant ∞), ignoring multiplicity. then f = g.



Bibliography 9

Proof. Suppose we are in K or in D. We put M(r) = max(T (r, f), T (r, g)).
Suppose that f and g are distinct and share q small function I.M. wj, (1 ≤ j ≤ q).
By Theorem 3.10, we have

qT (r, f) ≤ 3

q∑
j=1

Z(r, f − wj) + o(T (r, f)).

But thanks to Theorem 4.3, we can derive

qT (r, f) ≤ 3T (r, f − g) + o(T (r, f))

and similarly

qT (r, g) ≤ 3T (r, f − g) + o(T (r, g))

hence

(1) qM(r) ≤ 3T (r, f − g) + o(M(r)).

By Theorem 2.2 and by Theorem 2.3, we can derive that

qM(r) ≤ 3(T (r, f) + T (r, g)) + o(M(r)))

and hence qM(r) ≤ 6M(r)+o(M(r)). Thus, this is impossible if q ≥ 7 and hence
the first statement of Theorem 4.4 is proved.

Suppose now that f and g have finitely many poles. By Theorems 2.2 and 2.3
and Relation (2) gives us

qM(r) ≤ 2M(r) + o(M(r))

which is obviously absurd whenever q ≥ 3 and proves that f = g when f and g
belong to M(K) as well as when f and g belong to Mu(d(0, R−)). The proof is
similar if f, g ∈Mc(E). �

Corollary 4.4.a : Let f, g ∈ A(K) be transcendental (resp. f, g ∈ Au(D,
resp. f, g ∈ Ac(E) ) be distinct and share 3 distinct small functions (other than
the constant ∞), ignoring multiplicity, wj ∈ Af (K) ∩ Ag(K) (j = 1, 2, 3) (resp.
wj ∈ Af (D) ∩ Ag(D), (j = 1, 2, 3), resp. wj ∈ Af (E) ∩ Ag(E) (j = 1, 2, 3)).
Then f = g.

Remark: In complex analysis, thanks to Yamanoi’s Theorem [12], it is easily
seen that if two meromorphic functions in C, f and g, share 5 small functions,
then f = g. And if two entire functions in C, f and g, share 4 small functions,
then f = g. But apparently, the same process does not let us show that if two
entire functions in C, f and g, share 3 small functions, then f = g.

Acknowledgment: The first author is grateful to Khodr Shamseddine for his
material help for organizing the lecture on Zoom, at the Conference.
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